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2.1 Introduction

Providing forecasts that form a useful base for actions ahead of high-
impact weather events, involves a cascade of models and predictions tar-
geting different timescales. The production chain includes the estimation
of initial and boundary conditions as well as state variables for the atmo-
spheric forecasts, hazard models and impact models. The combination of
the models will lead up to warnings and decisions (Zhang et al., 2019). In
this chapter we will cover the multi-(time)scale aspect of severe weather
forecasting, and the use of these forecasts in hazard forecasting. Based on
the experience of these different steps, we discuss the requirements for a
weather forecasting system to provide the right ingredients for the fore-
casting chain.

The notion of multiscale predictability of severe weather builds on the
concept of a cascade of processes with different horizontal and temporal scales
that determine the final event. It could, for example, be a (1) lightning from
a (2) convective cell, that is embedded in a (3) cold front associated with an
(4) extra-tropical cyclone, which formed due to (5) large-scale baroclinic
conditions. (1) through (5) have very different scales and predictability.

Forecast will always contain a level of uncertainty; it will never be
possible for example to predict which second and location a single light-
ning will strike. It is therefore natural to talk about a level of risk building
on the probability for an event to happen. In weather forecasting today
such probabilities are usually based on ensemble forecasts. Ensemble fore-
casts contain a number of scenarios (forecasts) from which the probability
for an event to take place can be estimated. Other techniques to estimate
uncertainties are often employed in hazard and impact models.
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Fig. 2.1 illustrates examples of ensemble forecasts on different time
ranges for a selected event. Starting from a point-in-time long before
(beyond the limit of predictability) the event occurred, the probability dis-
tribution function (PDF) from the forecast is likely to be very similar to
the climatological distribution, with per se a low probability for extreme
events. As we approach the event (week(s) before), some slight shifts of
the forecasts PDF from the climatology might appear, either because a
few members pick up an extreme scenario or most of the members are
slightly shifted towards an anomaly due to some large-scale forcing.
Closer in time to the event (medium-range, 3 to 10 days ahead) the PDF
is skewed towards an extreme solution and in short-range forecasts (0�3
days) the ensemble (hopefully) sharpens around the (the later) observed
value. However, if the magnitude of the event is not within the envelope
of what the model can simulate, the severity of the event will be missed
also by the shortest forecasts. In this chapter we will discuss processes that
influence the PDF on different timescales and how to define shortcomings
in the prediction system.

The outcome of an extreme event is often determined by several fac-
tors, both related to a single meteorological event and past events. For
example, river flooding is often caused by a series of precipitation events
together with preconditioning hydrological conditions and catchment
properties; the life-threatening aspect of a heatwave is a combination of

Figure 2.1 Example of evolving probability distribution function. The example is for
2-m temperature in Paris, July 1, 2015. From ECMWF Newsletter 145.
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the magnitude and length of the period of extreme heat; and coastal
flooding can be a combination of storm surge, waves, and precipitation as
well as coastal properties. This combination of factors is often referred to
as compound events in which the different factors can have different
predictability.

How far ahead is a severe weather event predictable to a level where the forecast
information is valuable enough to take action? This is a very obvious question
from forecast users, but a very complex question to answer from a statisti-
cal perspective. First of all, different users have different requirements on
the forecast quality and properties needed to take actions and these
requirements might be different for different lead times, as forecasting
extreme events is important on several timescales ranging from seasonal to
very short timescales. Different types of extreme weather events have dif-
ferent predictability and properties and for similar types of events this can
vary with season and location and other factors. Hence it is very difficult
to give a generic answer to the question above from a user perspective.

In Section 2.3 we discuss sources and barriers for predictability of dif-
ferent events on different timescales. Besides the usefulness aspect of fore-
cast verification, forecast verification is needed to find weaknesses in the
prediction system to guide future development. Here one needs to under-
stand the underlying predictability mechanisms for extreme events to
identify key processes to be improved, and how such mechanisms vary
with the lead time in mind.

Forecasters make use of a series of tools to predict severe weather. For
the shortest timescale (0�6 hours) nowcasting techniques are used based
on direct interpretation of the most recent observations for ground sta-
tions, radar and satellites, and statistically (or artificial intelligence-AI)
based movement of the features. For longer lead times, Numerical
Weather Prediction (NWP) forecasts are utilized. NWP is based on the
determination of the state of the atmosphere that will serve as initial con-
ditions by the use of data assimilation. This state is evolved forward in
time by a model that is based on the laws of physics. For short-range fore-
casts (0�3 days), one uses regional NWP models with high spatial resolu-
tion and frequent output. For longer time ranges global models are used
as the regional weather is determined by processes far away. As the time-
scale increases also the remote influences of boundary conditions such as
ocean and land conditions start to impact the outcome. The global models
are implemented in medium-range (3�10 days), extended-range (1�6
weeks), and up to seasonal (1�12 months) forecasting range.
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NWP forecasts are often run to create an ensemble of forecasts.
Ensemble forecasts aim to simulate the forecast uncertainties by evolving
the uncertainties in the initial state and account for uncertainties in the
numerical model. The PDF of the forecast ensemble can be determined
under the assumption of the weight of each ensemble member. The out-
put from NWP is used to drive impact models for hydrological conditions
including floods and droughts, wildfires, health, etc.

In this chapter we will make use of the ECMWF forecasting system, but
the concepts are independent of the choice of system. The chapter is orga-
nized as follows: The basics of NWP are outlined in Chapter 1.2 and will
not be repeated in this chapter. An example of the prediction of a severe
event on different timescales is discussed in Section 2.2. In Section 2.3 factors
influencing the predictability for a selection of events are outlined,
Section 2.4 discusses hazard modeling, Section 2.5 takes on the evaluation
aspect of extremes and finally the chapter is concluded in Section 2.6.

2.2 Example case: 2015 European heatwave

In this section we will use one case of extreme weather to illustrate pre-
dictions of different timescales. The selected case is from July 2015, which
was dominated by very warm weather in southern and western Europe as
can be seen in the monthly mean temperature map in Fig. 2.2. At the
same time Scandinavia and northeastern Europe instead saw cooler than
normal conditions.

The ECMWF operational forecast system consists of 4 different com-
ponents aimed for different timescales. In 2021, the four times a day (with
shorter lead times for 06UTC and 18UTC, in parentheses) operational
forecasts at ECMWF consists of a deterministic forecast (HRES) with
9 km resolution doing out to 10(4) days ahead and an ensemble with 50
perturbed members and 1 unperturbed member all with 18 km resolution
going out to 15(6) days. Twice a week (Monday and Thursday 00UTC)
ENS is extended out to 46 days with a resolution of 36 km after day 15
to form the extended-range forecasts. With the same configuration, a
reforecasts dataset is created based on the same date for the past 20 years
and 11 ensemble members. Finally, on the first day every month seasonal
forecasts are created out to 7 months ahead with a configuration similar to
the extended-range forecasts.

To first examine the predictions of the conditions during the period
29 June to 17 August in the extended-range forecasts, the panels in
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Fig. 2.2 show composites of 2-m temperature anomalies in ensemble
mean forecasts valid the same period as the analysis in the top panel. The
forecast anomalies are computed in respect to a 20-year reforecast dataset
in order to account for lead time-dependent model biases. The forecasts
are based on 7-day averages and are issued at the start of the event (week-
1 forecast) and 2 weeks before the start (week-3 forecast). The anomaly

Figure 2.2 Temperature anomaly for the period June 29 to August 17, 2015 in ERA5
(A) and composites of ECMWF extended-range forecasts on lead time 0�6 days (B),
and 14�20 days (C).
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patterns were well captured in the composite of week-1 forecasts as
expected because of the short lead time. But the patterns were also well
captured in the week-3 forecasts. Two likely sources for this skillful pre-
diction in the extended-range are the sea-surface temperature pattern in
the northern Atlantic and the soil moisture conditions over Europe. For
the latter, as May and June 2015 had been dry in western Europe, the
lack of soil moisture for evaporation would amplify a heatwave once the
atmospheric conditions are favorable.

To evaluate shorter predictions, we will zoom in on the forecasts for
Paris valid 1 July, which turned out to be the most extreme day of the
season for Paris in terms of temperature. The observed maximum temper-
ature in central Paris was 39.1 degrees Celsius. The extreme heat was pri-
marily caused by a ridge that developed over south-western Europe at the
end of June that advected very warm air northward.

Fig. 2.3 shows the evolution of forecasts for 2-m maximum tempera-
ture on 1 June 2015 in Paris, initialized at different times. The plot
includes the ensemble distribution from the ECMWF ensemble and the
ECMWF high-resolution deterministic forecast. The figure also includes

Figure 2.3 Forecast evolution for maximum temperature in Paris on July 1, 2015 in
ECMWF ensemble forecasts (blue box-and-whisker), ECMWF HRES forecasts (red dot)
and model climatology based on reforecasts (red box-and-whisker). The observed
maximum is included in green.
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the climatological distribution derived from the ECMWF reforecast data-
set. Finally, the plot includes the observation from central Paris. As
ECMWF produces ensemble forecasts with different lengths (46 days
twice a week, 15 days twice a day and 6 days 4 times a day), we see more
frequent forecasts for short lead times before the event.

Starting from one month before the event, one should not expect the
forecast to show a strong signal, and indeed the forecast is very similar to
the model climatology. But from June 11 and onward all ensemble med-
ians (back dot) are clearly above the median of the model climatology.
From about 14 days before the event the ensemble distribution started to
gradually shift towards warmer temperatures and during the week before
the event the ensemble spread reduced and the forecasts converged to a
value well above the 99th percentile of the climatology. However, also
the shortest forecast underpredicted the extreme temperature on 1 July. In
this section we will discuss some of the processes active during these
stages.

Looking at the forecasts initialized around 8�10 days before the event,
the ensemble distribution is clearly shifted towards warmer temperatures
and is also skewed towards the extreme tail of the distribution. The ini-
tialization of this forecast coincides with the time of the first detection of
a Rossby wave packet over Western Pacific. The packet first appeared
over the Western Pacific around June 22 and started to propagate east-
ward. The packet reached eastern Atlantic in the last days of June with a
positive node (winds from south) over western Europe. By capturing the
wave packet propagation, the probability for the ridge over western
Europe increased and with that the probability for the heatwave. The
effect of the presence of Rossby wave packets on the mid-latitude
predictability is documented in, for example, Grazzini and Vitart (2015),
who showed that the predictability is increased by the presence of long-
lived Rossby wave packets.

One day before the event (30 June 00UTC), the ensemble distribution
was narrow and centerd at 37°C. At this point in time the trough over
the central Atlantic that later pushed the warm air northward had started
to develop, giving a strong confidence in the development of the heat-
wave. However, when we compare the ensemble and HRES forecast
with observed temperatures from stations across Paris, we find that the
maximum temperature was underestimated by all individual forecasts, as
seen in Fig. 2.4. One plausible explanation is that the model does not
include urbanization and can therefore not capture heat islands in cities.
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But the ECMWF verification of 2-m temperature also shows a more gen-
eral underestimation of the diurnal cycle over Europe during summer
time (Sandu et al., 2020).

To summarize this case, we speculate that the presence of anomalies in
soil moisture and Atlantic sea-surface temperatures could have shifted the
ensemble towards warmer temperatures on the extended-range timescale.
In the medium-range, capturing the Rossby-wave packet seems to have
been the key to predicting the meridional flow that brought warm air
northward over western Europe. However, short-range forecasts also suf-
fered from an underestimation of the maximum temperatures.

2.3 Key factors of predictability

In this section we aim to discuss sources of predictability for a selection of
primary (meteorological) events affecting Europe. Fig. 2.5 lists key factors
for predicting a selection of extreme event types on extended-range (2�4
weeks; sometimes referred to subseasonal), medium-range (3�10 days),
and short-range (0�3 days) timescales for several types of severe weather.
This section is mainly an extraction from Magnusson (2019).

Figure 2.4 2-m temperature forecast for Paris from July 30, 00UTC. ECMWF ensemble
members (blue), ECMWF HRES (red), and four different observation stations (black).
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2.3.1 European heatwaves
On the extended-range timescale, the temperature anomalies are modu-
lated both by local predictability drivers such as soil moisture (Ferranti and
Viterbo, 2006; Fischer et al., 2007; Vitart and Robertson, 2018), and by
the large-scale flow regimes. The former directly affects apportioning
between sensible and latent heat fluxes; and in turn cloud cover can also
be affected, which itself will provide a negative feedback (in summer) by
reflecting back insolation. It is therefore important to correctly initialize
the soil conditions in extended-range forecasts (Dirmeyer, 2011). For the
large-scale flow, persistent blocks over Europe favor heatwaves. To set up
such atmospheric flow conditions in the summer, among other factors,
the sea-surface temperature (SST) in north-eastern Atlantic plays a role
(Wulff et al., 2017).

To predict onsets of the large-scale flow patterns, medium-range
predictability of Rossby Wave Packets (RWP, Wirth et al., 2018) are
important (Fragkoulidis et al., 2018). On average the presence of long-lived
RWP increases the predictability(Grazzini and Vitart, 2015). However, the
prediction of the packet propagation is sometimes affected by uncertain ele-
ments such as organized convection and/or rapid cyclogenesis, resulting in
bad forecasts of onesets of blocking patterns (Rodwell et al., 2013;
Magnusson, 2017). There is also a difference in the processes (advection,

Figure 2.5 Summary table of key factors influencing predictions of different time-
scales. The final column references articles in ECMWF Newsletters. Available from
http://www.ecmwf.int.
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subsidence, diabatic processes) leading to heatwaves in different parts of
Europe as discussed in (Zschenderlein et al., 2019), and the influence of
these processes need to be captured in the medium-range forecasts.

Although there is relatively high predictability for the large-scale flow,
short-range forecasts often result in large 2-m temperature errors. During
heat waves, the ECMWF model has problems to simulate the amplitude of
the diurnal cycle. One reason could be that the model does not currently
include urban tiles and hence misses the extra heating due to tarmac and con-
crete; these factors are discussed in, for example, Hogan et al. (2017).

Hazards that are related to heat waves include human heat stress, wild-
fires, and meteorological droughts.

2.3.2 European cold spells
Cold spells over Europe are often caused by large-scale flow patterns
bringing cold air from north and east, such as Scandinavian blocking and
negative North-Atlantic Oscillation (negative NAO, sometimes referred
to as Greenland blocking) (Ferranti et al., 2018). These two regimes dis-
rupt the westerly flow towards Europe and replace it with strong meridio-
nal flow and often anticyclonic conditions. Under anticyclones, strong
surface inversions can form in calm and clear conditions leading to
extremely cold wintertime temperatures.

On the extended-range timescale, these large-scale flow patterns have
teleconnections from Madden-Julian Oscillation (MJO, Cassou, 2008)
and/or sudden-stratospheric warmings (SSW, Baldwin and Dunkerton,
2001). If these precursors are predictable (Vitart, 2014), we should expect
some predictability for the flow regimes if the teleconnections are suffi-
ciently captured by the model. The predictive skill of the wintertime
regimes and the conditional dependence of skill on MJO was recently
presented in Ferranti et al. (2018).

The transition into a blocked flow regimes is often related to Rossby
wave breaking (Woollings et al., 2008). The ability of extended-range
forecasts to, in a climatological way, capture the link between Rossby
wave breaking and formation of blockings has recently been evaluated in
Quinting and Vitart (2019). The formation and maintenance of these
regimes are also suggested to be linked to diabatic processes related to
warm-conveyor belts (Wernli and Davies, 1997; Grams et al., 2011).
These onsets are sensitive to small errors in the upstream flow and such a
case is discussed in Grams et al. (2018).
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Short-range forecasts during cold spells often experience very large
(.10 degrees) 2-m temperature errors, and in most cases related to strong
surface inversions (add references). The inversions are difficult to simulate
in models due to insufficient vertical resolution in the boundary layer.
The shallow nature of these inversions leads to large temperature errors
for relative small errors in energy fluxes (Day et al., 2020). It could also be
the case that physical parameterizations such as vertical diffusion are not
perfectly suited for these extreme conditions.

In connection with cold spells, severe weather in the form of heavy
snowfall/blizzards can occur. However, the meteorological features caus-
ing the extremes can be very different. As an example, proximity to seas
or large lakes can give rise to intense, local snow showers on the coasts.
With parameterized convection, it is difficult to capture the advection of
such showers onto land, and often also the short-range forecasts miss the
large amount of snow on the coasts.

Another uncertainty related to precipitation during cold conditions is
to predict the precipitation type (Gascon et al., 2018). Here fine bound-
aries between rain, snow, sleet, and even freezing rain make a huge differ-
ence in the severity of the event, even if the precipitation rate is similar.
An additional complexity is heavily populated coastal areas with high vul-
nerability, which magnifies the uncertainty of the impact due the precipi-
tation type.

Hazards related to cold spells are (as mentioned above) blizzards, freez-
ing rain, and human heat stress.

2.3.3 Northwestern European windstorms
While predicting the exact track and timing of Northern European wind-
storms on the extended-range timescale is impossible, forecasting the
increased likelihood of the features is the target on this timescale, and pre-
dicting the NAO is key (Donat et al., 2010) as its positive phase favors
cyclone tracks towards northwestern Europe. The positive phase of NAO
has a statistical teleconnection from enhanced convection in the Indian
ocean due to MJO (Cassou, 2008).

As in the case to make medium-range predictions of many other
extreme weather types in the mid-latitudes, capturing RWP is also impor-
tant for windstorms (Wirth and Eichhorn, 2014), in order to predict the
risk of downstream developments that can form extreme cyclones.
Explosive developments are often associated with upper level divergence
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by the jet stream (left-exit), and here the key is to capture the phasing of
the jet stream and the lower level cyclones.

For shorter timescales, another difficulty for predicting extreme winds
is to capture structures that cause wind maximum gusts, such as sting jets
(Hewson and Neu, 2015) and embedded convection caused by dry intru-
sions (Raveh-Rubin and Catto, 2019). As global models still rely on
parameterization of wind gusts, this naturally causes uncertainties. But the
problem of capturing wind gusts also appears in convection-permitting
models (Pantillon et al., 2018).

Apart from the direct damaging effect of the winds, the windstorms
can cause high wave events on the sea and storm surges along coasts, and
also cause flooding due to heavy rainfall (see below).

2.3.4 Precipitation extremes due to North-Atlantic cyclones
Connected to extra-tropical cyclones are so-called atmospheric rivers:
bands of high mean transport moisture that can bring extreme rainfall
when ascending over orography (Ralph and Dettinger, 2011). Lavers
et al. (2017) showed that using water-vapor flux to trace atmospheric riv-
ers is a good predictor of high precipitation events during positive NAO
conditions during European winters. Therefore, the extended-range pre-
dictions of these rely on the same mechanism as the windstorms discussed
above.

To capture the magnitude of the precipitation over orography, suffi-
cient model resolution is needed together with accurate model micro-
physics to capture the timescale of the rain-formation (Forbes et al.,
2015).

2.3.5 Precipitation extremes in southern Europe
Precipitation extremes in the northern Mediterranean are often connected
to large-scale upper level troughs (Nuissier et al., 2011; Raveh-Rubin and
Wernli, 2015; Mastrantonas et al., 2020) together with interaction with
local orography. Statistically, the precipitation over the Mediterranean is
negatively correlated with the NAO (e.g., Trigo et al., 2004; Vergni
et al., 2016; Tsanis and Tapoglou, 2019).

Many evaluated cases show that a reasonable signal of extreme precipi-
tation compared to the model climatology appears well into the medium-
range, due to the prediction of the large-scale troughs. These large-scale
precursors are often part of a Rossby wave packet (Martius et al., 2008)
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and have been shown to have good predictability (Grazzini, 2007). The
extreme precipitation often appears on the eastern side of the trough,
connected to strong moisture flux (atmospheric rivers). The extreme pre-
cipitation often occurs due to orographic enhancement when the moist
air is forced to ascend (Khodayar et al., 2018). The presence of atmo-
spheric rivers is largest in the autumn (Lavers and Villarini, 2013). The
predictability of the extremes in the medium-range is dependent on the
convective influence in the precipitation extremes, with lower predictabil-
ity in summer time when the convective part is stronger (Grazzini et al.,
2019). An open question is whether the troughs over the Mediterranean
have a regime-like behavior and are predictable on the extended-range
timescale.

In the short-range forecasts the details in the moisture flux, convective
initialization and interactions with orography are important factors to pre-
dict the extremes (Gascon et al., 2016). These factors are still difficult for
global models where the convection is parameterized and the orography
is not sufficiently resolved.

The extreme precipitation can cause flooding events, both as flash
floods in coastal mountainous areas and, especially if several events follow
each other, more widespread river flooding.

2.3.6 Severe convection
Severe summer-time convection over Europe often results in intense rain-
fall, hailstorms, severe wind gusts, lightning, and on rare occasions torna-
does. However, on the extended-range timescale it is more difficult to
find any key features that would give an early indication of these features.
Instead in the medium-range the key feature is to find unstable air that is
often ahead of cold fronts. To identify such features, the Extreme Index
Forecast Index for CAPE has been found to be a useful approach
(Lalaurette, 2003). As convective cells are favored by a vertical wind shear,
another EFI index that is a combination of CAPE and the lower tropo-
spheric vertical wind shear has been developed and tested (Tsonevsky,
2015). The atmospheric models cannot explicitly predict lightning, but
promising results with a parameterization is discussed in Lopez (2016).

Capturing the true magnitude of wind gusts in connection to convec-
tive systems are challenging for the global models as they do not explicitly
resolve convection and the associated downdrafts. Instead convective indi-
ces calculated from model quantities are still a useful tool such as the EFI
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products mentioned in the previous paragraph. Another challenge is the
variability inside a grid-cell that can be large for precipitation in convec-
tive systems. One way to account for this effect is adopted and outlined
in Pillosu and Hewson (2017). This method broadens the PDF to account
for the variability not resolved by the model, and is dependent on the
orography and weather situation (more subgrid scale variability due to
mesoscale events compared to synoptic events).

The global models with parameterized convection also have problems
to capture the timing of the convection and often miss the extension into
the evenings.

Another risk during severe convection is flash floods (pluvial floods).
Here the interaction between large-scale forcings, the moisture flux
(atmospheric rivers), orography and convective triggering creates favorable
conditions, but also the soil wetness before the event plays a role.
Dependent on these factors the predictability of the extreme rainfall can
be very different. It is also important here to have surface models that cor-
rectly model the surface runoff and local storage of water.

2.4 Hazard forecasting

In this section we will discuss how the atmospheric forecasts are used in
the hazard forecasting process. We will discuss applications in flood,
drought forecasting, heat stress, and wildfire forecasting.

Many hazards are caused by cascading events where for example a
sequence of moderate precipitation events causes floods or a blocking sys-
tem creates dry soil conditions leading to fires. Such cascades are rarely
linear like a row of dominoes but more often intrinsically connected with
several feedback loops. A blocking system may cause dry soil conditions
which lead to a lower evaporation influencing temperature leading to a
heatwave which has an impact on human health. This is even more com-
plicated as the different physical processes act and occur on different spatial
and temporal scales.

Forecasts are uncertain and such uncertainty is often expressed in
ensemble members aiming to approximate the probability distribution of
future events. In a connected earth system as described above the cascad-
ing hazards start with a probabilistic distribution of the drivers (i.e., precip-
itation, temperature, and soil moisture) leading to a probabilistic forecast
of the hazard (i.e., floods, droughts, fire, and health) modulated through a
number of low pass filters such as soil moisture or vegetation growth.
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Hazards and disasters are rare and thus have low probability in forecasting.
Such low probabilities are usually associated with the tails of climatological
distributions. A long range forecast (if reliable) is very close to the climato-
logical distribution and small shifts in the tail of such a forecast could lead
to the forecast of a disaster—this is often more complicated as it will
require the shift in tails of several variables or even of the same variable at
different accumulation times. For example, a flood may be caused by pre-
cipitation on wet soil. The same precipitation on a dry soil may lead to
the flood not occurring. Therefore not only the precipitation forecasted
for a small window matters, but also the accumulated precipitation (in
addition to evaporation) will need to be known to understand whether an
event occurs or not. It follows that cascading probability distributions for
extreme events may narrow or enlarge throughout such a cascade
depending on the temporal and spatial scale relevant for the particular
physical process and its interaction with the inputs and outputs in ques-
tion. It is important to note that forecasting the tails of a climatological
probability distribution is not equivalent to forecasting an extreme event
itself. At shorter lead times the probability distribution of a skillful and
reliable forecast will more close center around the extreme event values
itself. This chapter investigates the forecasting of individual hazards and
the relevance of different scale structures. It demonstrates how meteoro-
logical information and evolving probability distributions influence the
forecast of natural hazards.

Forecast skill and performance plays a pivotal role in understanding
and investigating evolving probability distributions. For example, one may
have a “perfect” precipitation forecast, but the snow pack forecasting may
be of significant less quality. Therefore, floods caused by rain on snow
may have very low skill, which also means that the spatial and temporal
relationship between precipitation falling as snow earlier in the season to
the precipitation which triggers the flooding is incorrect and all findings
relating to scale structures would be a poor guide for future model devel-
opment. In the worst case, the flood could be still forecasted but for the
wrong physical reasons. Thus to understand underlying predictability for
extreme events requires the identification of the dominant and relevant
processes which lead to this event. Such an example of a “failing” of the
physical cascade can also be found with similar event types where predict-
ability is strongly related to seasonal, geographical or other factors. In
order to improve forecasts, all earth system models have tuned or cali-
brated parameters which have often disguised “physical names.” This
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process is designed to ensure that the model is representative of the pro-
cesses it represents, but can also unduly influence any analysis on scale
structures.

2.4.1 Hydrological processes and predictability of flood and
droughts
Runoff (or the amount of water at the surface of a catchment) results
from the terrestrial water balance components, with gains (precipitation)
and losses (from plants and water bodies through evaporation), and from
water already stored within the catchment and released to the river.

Water contained in soil and floodplains stores generally reaches the
river after a few hours to a few days, but other stores, such as groundwater
aquifers, wetlands, lakes, and reservoirs, as well as snow pack and glaciers,
release water much slowly, at timescales from weeks to month. Release
speed also varies for a same storage family depending on many factors
such as soil type, geology, and climate (for water stored at the surface as
snow and ice).

Additionally, for long rivers and large catchments, water takes time to
move from headwaters upstream to lowlands downstream, so that the
movement of flood waves from one part to another of the catchment can
be anticipated following heavy rainfall and rise in water levels upstream.
This speed depends on catchment topography and morphology, catch-
ment shape, and number of tributaries (Brutsaert, 2005).

Depending whether the catchments water stores are full or empty,
additional water from the atmosphere or from upstream will further fill
the stores, or go directly to the rivers. Knowing how much and where
water is already in the catchment hence provides a very useful indication
of future states of the rivers. This is what is called the Hydrological Initial
Conditions. They are an important source of predictability for hydrology
and river flow forecasting.

The other source of river flow predictability is of course the water bal-
ance components (gains and losses, the later depending on both atmo-
spheric and vegetation)—their forecasting performance contributing to
forecast skill of river flow at different time ranges.

However, the pace at which the catchment reacts to the atmospheric
forcing is variable.

When water stores are full, rain over those areas cannot enter the
stores (e.g., through infiltration) and reach the river channel very quickly
resulting in a quick rise of river flow—the subcatchment has a fast
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response to rainfall events. This is typically the case for flood events, with
a particular extreme case of flash-flood or pluvial flooding when surplus
water does not even reach the river. Conversely, when water stores are
empty, rain first replenishes them and does not enter the river channel
through surface pathways, but instead, water is slowly released from the
stores—the subcatchment has a slow response to rainfall events. This is
typically the case for drought events.

Moreover, other water pathways exist, in particular for flood events,
when surplus water can come from snow or glacier melt, groundwater
aquifers or upstream flood waves. In this case, events are often slower to
develop and as a consequence also last longer.

As a result, river flow of fast-responding events (i.e., floods) and/ or
catchments tend to evolve primarily according to the atmospheric input,
especially precipitation. This means river flow forecasts rely heavily on precip-
itation forecasts to predict both timing and magnitude of events, and require
input at scales consistent with response time—typically subdaily to daily—and
main catchment characteristics, typically kilometer.

Conversely river flow in slow-responding events (i.e., droughts) and/or
catchments tends to evolve primarily at the storage process speed. This
means that river flow forecasts rely on knowledge of both Hydrological
Initial Conditions and atmospheric forecasts, with HIC importance stronger
at the beginning of the forecast, and atmospheric forcing dominating a lon-
ger timescale, varying from days to weeks (Shukla and Lettenmaier, 2011).

The size and number of water stores and geographic location of a
catchment and time of the year contribute to define whether river flow is
likely to react quickly or not to precipitation input. Urban areas tend to
reduce infiltration processes and hence generally are fast-responding.

Because IHC can be monitored or simulated from observation, and
because hydrological models account for both atmospheric water balance
and terrestrial hydrological processes within the catchments, forecasting river
flow in slow-responding catchments or events gain additional predictability
from IHC to that of atmospheric forcing when. Typically, drought events
might gain predictability at a longer time range even in regions with low
predictability of precipitation at extended or seasonal range.

2.4.2 Challenges
As seen above, the way catchments respond to atmospheric forcing
depends very much on the landscape, soil, and vegetation, which vary at
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spatial scales (B1 km) much finer than that of Numerical Weather
Prediction (Bartholmes and Todini, 2005): typically NWP have horizontal
resolution larger by a factor between 2 and 5 for limited-area models, and
10 and 40 for global models, also depending on the forecasting range,
with extended and seasonal range tending to have coarser horizontal
resolution.

This means the need to downscale the information from NWP to
match that of hydrological processes as much as possible, in practice to
that of the hydrological models used for generating the river flow fore-
casts. This is particularly true to flood events, and especially flash floods
which tend to occur on smaller, steep catchments, or in response to very
localized heavy rainfall events.

Postprocessing precipitation forecasts to produce atmospheric forcing
representative of the scale of hydrological models (often referred to as
downscaling) is one of the key challenges of hydrological forecast, and
especially flood forecasting which develops at much smaller scales than
droughts; additionally, drought are responding to nonevents (lack of rain-
fall over an area) hence the discrepancy of scale between NWP and
hydrological model in a way disappear.

Postprocessing downscaling techniques range from simple regridding
to sophisticated bias-correction techniques (Liu et al., 2008), such as quan-
tile mapping or more complex machine learning techniques. The critical
challenge is to correctly predict the location of the rainfall event at the
same resolution of the hydrological model. It is also to produce informa-
tion consistent with the modeling chain, typically as ensemble forecasts
and nor probabilistic fields.

In addition, the timing of precipitation events is critical for those
fast-responding flood generation processes. This can be challenging for
forecasts of lead time beyond the short-range, as such events are less pre-
dictable. As a result, forecasts of flood events are often reduced to
the short- to medium-range lead time, with extended (subseasonal) to sea-
sonal range forecasts only really possible for predicting likelihood of high
flows anomalies or of drought events over a period.

In most parts of the world, rivers are not fully natural systems and are
influenced by many human interactions: they include abstraction and dis-
charge to satisfy the various water supply demands, managed man-made
reservoirs, embankments and flood defences.

Those human interactions impact differently on flood and drought
events: river abstraction have more impact on droughts as tend to
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exacerbate losses and more modestly floods especially if those are gener-
ated by heavy rainfall events which go to the river channel quickly;
opposingly, flood defences are by design aiming to minimize floods by
retaining as much possible water in the river channel or storing it in flood
plains; however, for hydrological models which only model flood flows
and not water levels, their impact are minimal.

Reservoirs can impact both floods and droughts, as they act as addi-
tional water storage and effectively stop water from upstream to down-
stream of rivers: for droughts, they can be used as additional water sources
for water abstraction, or to compensate for lack of rainfall by releasing
pre-agreed water amounts downstream to minimize drought impact (also
called environmental flows); during heavy rainfall events, they can be
used to temporary store the water and stop the flood wave (e.g., small
retention areas on hillslopes or dams constructed along the river). The
way a reservoir impacts on floods, droughts or both depends on its size,
location and design, as well as its management. Often, reservoirs are not
built for the sole purpose of drought and flood mitigation but for other
functions, such as hydropower or irrigation. In this case, their use for pure
hydrological purpose might conflict with their other uses, requiring com-
plex management and negotiation.

In reality, there is only limited information available on human inter-
actions on river flow, and they are not always included in hydrological
models. The most sophisticated models aim to include functions such as
abstraction and reservoirs, but they are often associated with simple theo-
retical rules and thresholds because of lack of detailed and observation-
based, information. Artificial structures in rivers are most often neglected
especially for distributed models covering large areas, such as continental
or global models. In many parts of the world, however, even the location
of potential abstraction sources and reservoirs can be not known, and
those are simply not accounted for in models.

An additional challenge to modeling the human influence is to also
forecast those activities. For irrigation-led abstraction, ideally planting
cycle and vegetation needs should be modified according to forecasted
atmospheric conditions. In practice this is rarely done and climatological
functions are used in forecast mode, ignoring the potential to adapt those
rules if exceptionally dry/ hot or wet/cold conditions are forecasted.

Finally, one of the biggest barriers in including human processes in
hydrological models is the lack of data available for understanding the
processes and building the models. This is especially true when building
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large-scale models such as global hydrological forecasting systems. In this
case, the “natural processes” only are simulated, and forecasts are expressed
as differences with extreme events simulated also as natural processes. In
this case, the simulated hydrological forecasts are not compared with
observations but with model-defined thresholds, aiming to predict the
occurrence of a hazard (drought or flood event). In addition to having
consistency in the modeled processes, this has also the advantage of mini-
mizing the potential biases in the modeled response compared with real
behavior, not only due to absence of human influence processes, but also
not appropriate scale or too simplified processes.

2.4.2.1 Type of hydrological, floods and drought forecasting, models
Two main families of hydrological models are being used for forecasting:
process-based, which transform atmospheric forcings into river discharge
variable by describing the terrestrial processes dominating the generation
of flood and droughts through a set of physically plausible equations; and
statistical models, which use data and machine learning techniques to pro-
duce a set of predefined outputs (e.g., flood or drought event) according
to a set of forcings.

Process-based models are generally based on simplified laws of physics,
or a set of conceptual processes not necessarily directly measurable (Clark
et al., 2017). In their most extreme forms, physically-based models assume
that physical parameters of the model are equivalent to measured quanti-
ties. When coupled with NWP, they can describe the full water cycle and
are often called earth system models. In such cases, they often do not
include lateral water transfers at the surface and subsurfaces, and hence
need to be coupled with routing models that move water along the river
channels to produce river flow, which themselves can then be categorized
as flood or drought events. The more processes are included, the more
complex the models and the more computational power is required to
undertake simulations. For a long time, this has restricted their applica-
tions to weather centers, especially when run in coupled mode. When
applied off-line, their parameters can be tuned to optimize the river dis-
charge simulations but in practice this is seldom done. The simpler so-
called conceptual models are very common for catchment hydrology and
require data to optimize the values of their parameters by minimizing
errors between observation and simulations. They generally only simulate
a few processes with their main output being river discharge, and are
extremely data and computationally sparse compared with earth system

106 Extreme Weather Forecasting



models. Whilst originally applied to small catchments assumed to have a
single rainfall-runoff transformation, they have since been applied success-
fully larger scales including global, where the spatial domain is divided in
smaller units connected through river channels (also called distributed
models) and parameters can be attributed a set of default parameters out-
side catchments with observations based on detailed information on the
catchment properties (including soil, geology, vegetation). The choice of
the type of process-based model used in a flood or drought forecasting
system depends on its aim (forecasts only at points at already identified
river gauges or along all river channels), the available data for its training
and verification and the computation power available.

Statistical models rely on observational data to define the best set of
equations able to reproduce from the forcing data hydrological variables
(Guo et al., 2014). They generally can only be applied to locations with
data and can require many hundreds of runs to converge to an optimal
solution, using machine learning algorithms for example. With the
increase of computation power and availability of big datasets, they are
now considered with more and more by the research community as alter-
native to process-based models for hydrological forecasting. Due to their
data requirement, direct flood or drought forecasts based on statistical
models has so far been limited, but statistic techniques have been used
successfully to postprocess hydrological forecasts, correcting for biases in
simulations based on near real-time observations in order to produce
more realistic forecasts.

2.4.2.2 Improving usefulness of flood and drought forecasting
systems
There are a number of challenges in hydrological forecasting (e.g., Cloke
and Pappenberger, 2009 for flood). Here we review some key aspects that
will impact on the forecasting performance.

2.4.2.3 Hazard thresholds
When forecasting extreme events such as floods and droughts, it is impor-
tant to agree on the definition of the events to be able to highlight them
in the forecast, also referred to the hazard threshold. The same definition
should also be used when verifying the forecasts, which can be a challenge
when different event definitions are used for putting in place the observa-
tory records.
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Generally, the hazard thresholds are defined according to a predefined
values, for example associated with a likelihood of occurrence or a regula-
tory framework (frequency/ return period), a danger level (river flow
associated with critical water level) or a known impact (environmental
flow now sustained). Theoretically, hazard levels could also be defined to
optimize forecast skill (e.g., Sivakumar, 2005), although this is seldom
done in hydrology due to lack of observations and often physical levels
which can be used to define warnings.

Most often, hazard thresholds are defined according to the climatologi-
cal behavior of the system, either as absolute values (typically for flood
events) or as anomalies (more typical for drought events), and generally
from the proxy-observation simulations considered to be follow the same
statistical distribution as the forecasts. Anomalies are usually favored to
tackle issues of heterogeneity across large spatial domains with different
climatology, but could be misleading (e.g., a wetter episode during a dry
season might not represent a severe flood event). However, with increase
of lead time and evidence of possible drift in the forecasts, such simplifica-
tion might not be appropriate, and lead time-dependent thresholds based
on reforecasts sets are preferable.

Finally, whilst deterministic thresholds are currently used to identify
hazard events, it might be conceivable to introduce more complex, proba-
bilistic thresholds especially when applied to ensemble forecasts and
defined according to ensemble reforecasts. When applied to ensemble
forecasts, hazard thresholds result in defining the likelihood of an event to
occur as the percentage of the forecast ensemble to cross that threshold.
This information is then passed on to users as an awareness product. This
is different from the warnings issued only by Met Services and authorized
organizations.

2.4.2.4 Impact forecasting
Increasingly, users ask for hazard forecasts to be complemented by impact
forecasts so they can better prioritize their actions: this is the expected
consequence the forecasted hazard could have. Impacts are generally
defined as categories of risk and level of impact expected.

Typically, impact forecasts are made by comparing the hazard forecast
(i.e., the likelihood of an event of a certain severity to occur at a certain
place) with information on exposure (i.e., the elements that could be
affected by the hazard in that location). For floods, often relevant expo-
sure will depend on the hazard but include population density and
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vulnerability (e.g schools, nursing homes, etc.), infrastructure (e.g., critical
building, road, and rail networks, electric grid), and land use (e.g., agricul-
tural assets, urban areas). Using hazard and exposure categories, risk levels
are defined according to pre-agreed thresholds on both hazard and expo-
sure dimensions. For hazards, the severity thresholds can be defined
according to the expected timing of the event (next few hours, next few
days, new few weeks), its magnitude and the likelihood of occurrence.
For exposure, thresholds can be linked to expected human and economi-
cal damage from the type of hazard, and existing levels of protection/
response.

2.4.2.5 Seamless forecasting
Traditionally, hazard forecasts systems are designed for a given forecast
horizon in line with atmospheric forcing forecasts: short-range up to 3
days, medium range up to 1�2 weeks, extended range up to 1�2
months, and seasonal range beyond. The same system can however pro-
vide multiple range forecasts in the form, the most often, of one or several
products for each of the forecasting ranges. This is important when cater-
ing for different decision making processes such as emergency response
(hours to 1 or 2 days), emergency planning (B1 week), and mitigation
planning (.1 week).

The reason why different products are produced for different forecast
ranges is because generally, atmospheric forecasts for different forecast ranges
(especially when moving from medium to subseasonal and seasonal range) are
produced independently from different models and forecast chains, and often
have different horizontal resolution and/or number of members. This means
that when a hazard forecasting system provides products for different forecast
horizons, those forecasts might not be consistent with each other, which
might confuse users and limit uptake.

To address this issue, a seamless forecast has been identified as a natural
progression of hazard forecasting. They consist of a unique set of ensemble
forecasts providing hazard forecasts at a wide forecast horizon, from now-
casting to subseasonal and even seasonal range. They are created by put-
ting together (or “blending”) the atmospheric forecasts with different
forecast horizons to create a unique ensemble of atmospheric input over a
long forecasting range. Those forcings are then run through the hazard
modeling chain to produce a blended hazard forecasting, consistent at all
forecast horizons.
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There are many challenges in creating seamless forecasts and merging
independent ensemble forecasts in a physically plausible way. Horizontal
resolution merging can be easily achieved by using downscaling techni-
ques and creating new forecasts all at the finest (hazard) resolution.
Merging in time is more challenging. The simplest way is to randomly
pair one member from each of the two ensembles, with the seamless fore-
cast created by continuing to the shortest range forecast member series
with data from the longest range forecast member. Because of the poten-
tial for substantial increase of computing time, generally the final number
of ensemble members is kept to one of the two native ensembles. To
avoid discontinuities both in space and time, especially for rainfall fields
which are important drivers of floods and droughts, more complex pattern
matching techniques can be used aiming to pair members with the most
similar patterns (typically rainfall cells).

Finally, NWP forecasts produced for different forecast horizons can
have different temporal resolution, potentially resulting in seamless fore-
casts with varying time steps across the forecast range, which can create
technical difficulties when running the system and archiving the data.

2.4.3 Fire risk
Fire in the earth system is, simultaneously, a necessary ecological process,
a useful tool, a destructive force, and a major source of pollution. Fire
modifies the land surface albedo directly through burn scarring and
changes in vegetation, and indirectly by depositing black carbon on snow
and ice. Smoke can have cooling or warming effects depending on the
intensity of the fire, the height at which the smoke is injected, and micro-
physical interactions with clouds. They are one important component of
Earth systems but forecasting wildfires is a complex task as they depend
on a completely unpredictable component: the way they start or “the
ignition.” Fires can start naturally, triggered for example by lightning or
through self-combustion (caused by natural heat-generating processes).
However, ignition can also be due to human behavior: through inten-
tional acts for forest management (or arson) or simply through negligence.
Quite commonly fires are used to encourage regeneration and biodiversity
in the forest ecosystem or to replace forest vegetation with agricultural
crops. Once a fire is ignited, its spread, sustainability, and difficulty of con-
trol is almost exclusively determined by weather conditions (Flannigan
et al., 2009). Flames tend to rage out of control if certain soil and
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atmospheric conditions are met, for example as a consequence of
extended drought or favorable wind conditions. Therefore, the prediction
of this hazard is like no other as it is inherently stochastic. In many cases,
no fire events occur, even when the forecast accurately predicts that con-
ditions are highly favorable. Clearly this peculiarity of fire prediction poses
big challenges to the interpretation of model output and the verification
of model accuracy.

2.4.3.1 Forecasting fire at different spatial and temporal scales
Fire occurs over a wide range of temporal and spatial scales, from local to
global, via many complex, interdependent, and poorly understood pro-
cesses. Fig. 2.6 summarizes fire modeling as a function of spatial and tem-
poral scales with the three triangles highlighting how different modeling
approaches are used depending on how fire is looked at (i.e., as a micro
process, a regional or global scale phenomenon) and on which timescales
(from hours to decades). Depending on the temporal and spatial scales
they focus on, these models all require different inputs and produce only
a limited set of information (e.g., heat released, fire behaviors and fire
regimes). At very small spatial and temporal scales, the combustion process
can be accurately described by a physical model, if fuel and oxygen are

Figure 2.6 State-of-the-art approaches to model fires at different spatial and tempo-
ral scales.
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provided as input variables. Models of physical combustions can be used
to understand the amount and type of particulate produced and how
much heat is released during the burning. These models are at the foun-
dation of the description of the burning process, however they are of lim-
ited use in an operational context when information such as, fire spread,
fire sustainability and control efforts are the main information required.
Thus, at the regional to global scale, the aim is to model the relationship
between weather and fuel availability as this relationship is the one that
ultimately controls fire behavior and its sustainability on a larger scale.

The difficulties of accessing global real-time observations of fuel amount,
type and moisture content have led most of the semiempirical models used in
fire danger management to only consider observed weather conditions. Due to
the improved skills of weather forecasting, the use of numerical weather pre-
diction has also offered in the last years a real opportunity to enhance early
warning capabilities (Roads et al., 2005; Mölders, 2008, 2010). Institutions
such as Natural Resources Canada (NRC) and the US National Oceanic and
Atmospheric Administration (NOAA) have implemented regional fire danger
forecasting systems based on their operational weather forecasts (Bedia et al.,
2018). The Global Fire Early Warning System is also an international initiative,
promoted by the Canadian Partnership for Wildland Fire Science and the
United Nation Office for Disaster Risk Reduction, to provide fire danger fore-
cast up to 10 days ahead using the Canadian operational weather forecasting
system (http://canadawildfire.ualberta.ca/gfews). Parallel initiatives are pro-
moted by the European Commission under the umbrella of the Copernicus
Emergency Management Service (CEMS), namely the European Fire Forecast
Information System (EFFIS, http://effis.jrc.ec.europa.eu/) and its global coun-
terpart the Global Wildfire Information System(GWIS, http://gwis.jrc.ec.
europa.eu/) (Di Giuseppe et al., 2016, 2020).

2.4.4 Heat stress
Climate, weather and health are closely related. How sensitive the human
body is to the outdoor environment is part of everybody’s experience.
Wind may cool down the human body by taking away its heat whereas
sunlight and humidity may warm it up by radiation exposure and limiting
sweating, respectively. In each of these situations the human body is con-
tinuously challenged to maintain its internal temperature within the range
of optimal physiological performance, comfort and health (McGregor and
Vanos, 2018). Usually efficient even when the surrounding temperature is
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very different, the human body’s regulatory mechanism may fail when
exposed to extreme environmental conditions causing disorders and ill-
nesses (Cheshire, 2016). Intense and prolonged periods of abnormal heat,
for instance, induce a thermo-physiological stress on the human body that
may result in increased hospital admissions and deaths particularly among
the elderlies. Similarly, exposure to cold extremes can depress the immune
system and increase susceptibility to flu and colds.

Knowing how thermal stress from extremes such as heat waves and cold
spells impact human wellbeing is essential to make weather forecasts, usu-
ally based on pure meteorological variables such as air temperature, mean-
ingful from a public health perspective. In recent decades indices that
assess thermal stress from the energy�thermal exchange between multiple
environmental factors and the human body have been proposed. One of
these indices is the Universal Thermal Climate Index (UTCI). The UTCI
is a state-of-the-art indicator representing the concurrent effect of air tem-
perature, wind speed, water vapor pressure, and short- and long-wave
radiant fluxes on human physiology (Jendritzky et al., 2012). The UTCI
is expressed on a stress category scale ranging from extreme cold stress to
extreme heat stress where each category corresponds to a well-defined set
of human physiological responses to the outdoor environment (Błażejczyk
et al., 2013).

2.4.4.1 Hazard forecasting
The UTCI is based on an advanced energy-balance model called the
UTCI-Fiala model (Fiala et al., 2012). The UTCI-Fiala model simulates
the physiological response of an individual to an outdoor environment by
coupling the human body’s thermoregulation system with the insulation
effect from temperature-dependent clothing. The model describes the
outdoor environment in terms of four meteorological variables—air tem-
perature, wind speed, relative humidity, and mean radiant temperature
(MRT) with the latter being the total radiation from the atmosphere and
the ground incident on an individual. The model takes the four variables
as input and generates the UTCI which represents in one number (a feel-
like temperature expressed in °C) the physiological responses to air tem-
perature, humidity, ventilation and MRT. UTCI forecasts are obtained
with a similar procedure (Di Napoli et al., 2021). Forecast outputs of 2-m
air temperature, 2-m dew point temperature, solar and thermal radiation
from ECMWF IFS model are first retrieved to compute forecasts of rela-
tive humidity and MRT, respectively (Di Napoli et al., 2020). The latter
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are then passed to the UTCI-Fiala model, summarized by a six-order
polynomial equation in the four meteorological variables (Brode et al.,
2012), for the computation of UTCI forecasts. UTCI outputs are gener-
ated at the same time as ECMWF’s extended-range forecasts up to 46
days ahead and cover all the globe (land and sea) north of 60°S latitude.
Example of an UTCI-forecast is given in Fig. 2.7.

Predicting the UTCI poses two main challenges. First, the uncertainty
of UTCI forecasts is inherently linked to the uncertainty associated with
the forecasts of its input parameters. The predictability skill of wind speed,
for instance, is usually lower than the predictability skill of air tempera-
ture. This could negatively affect the overall performance of UTCI fore-
casts (Pappenberger et al., 2015b). Statistical postprocessing may correct
systematic errors in the UTCI input parameters as demonstrated, for
instance, for the forecasts of other heat-related indices (Baran et al., 2020).
Second, UTCI forecasts have the same spatial resolution as ECMWF IFS
forecasts, that is, 9km-by-9km grid for HRES. While such resolution is
useful to capture atmospheric circulation patterns linked to thermal
extremes, it may be too coarse for assessing the impacts of thermal stress
on human health. The excess mortality and morbidity associated with
heat and cold extremes are usually observed at urban scales. Downscaling
UTCI forecasts at subgrid level may help better represent this (Leroyer
et al., 2018).

As for verification, the first challenge is to verify UTCI forecasts
against corresponding reanalysis data, for example, ERA5-HEAT, where
the latter are used as proxy-observations (Di Napoli et al., 2021). Another

Figure 2.7 UTCI forecasts of the June 2017 heatwave as issued on June 17, 2017.
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challenge is to verify the health impacts associated with the thermal
extremes predicted by UTCI forecasts. For this to be possible the relation-
ship between the exposure to heat/cold stress and the corresponding
health outcomes, that is, deaths or hospital admissions, must be deter-
mined. The greatest limitation of this approach lies in the availability of
public health data as these are usually not publicly available.

Where available, however, public health data can be matched with cli-
matological data and lead to the definition of a threshold so that, when-
ever exceeded, an increase of deaths is observed. For instance, the 95th

climatological percentile of the UTCI has been demonstrated meaningful
for heat health impacts in France as periods of excess mortality corre-
sponds to daily UTCI minima and maxima that are equal to or above that
threshold for 3 consecutive days (Di Napoli et al., 2019). In Europe most
warning systems for heat hazards use a threshold based on the relationship
between mortality records and air temperature to trigger precautionary
public health action plans; only a few systems consider other relevant
meteorological variables, such as humidity (Casanueva et al., 2019).
Although warnings are the responsibility of national health and meteoro-
logical services, UTCI forecasts can provide a first indication of detrimen-
tal thermal conditions via its stress category scale which was defined to
be valid in all climates and seasons. This information could be then
combined with how anomalous (e.g., with respect to climatology) the
predicted thermal stress is. Heat levels well above seasonal average expose
affected populations to a heat stress higher than the one to which they
are adapted resulting in extra deaths, as observed in the 2003 European
heatwave (Di Napoli et al., 2018).

2.4.4.2 Discussion
Meteorological extremes characterized by thermal (hot and cold) stress
represents a serious hazard for human health. The development of indices
such as the UTCI linking the exposure of an individual to the outdoor
environment with the body’s physiological responses has made it possible
to predict potentially detrimental conditions using the forecasts of four
weather parameters—air temperature, wind speed, relative humidity, and
mean radiant temperature.

Defined via a stress category scale meant to be valid in all climates and
seasons, UTCI forecasts have the potential to predict thermal extremes across
the globe. UTCI forecasts may be improved from several points of view.
Statistical postprocessing, for instance, may help reduce forecast uncertainties
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arising from variables like wind speed that in general show low predictability
skill (Di Napoli et al., 2021). As the UTCI is a thermophysiologically defined
index, impact-based verification of UTCI forecasts requires comparison
against information that is meaningful for human health. This could be mor-
tality records or hospital admissions which, however, are usually not publicly
available. Building an open-shared data framework between the meteorologi-
cal and the epidemiological community is a step that needs to be taken in
order to make weather forecasts health-meaningful tools. Outdoor question-
naire surveys involving the general public could also help by assessing
whether the thermal stress as predicted by UTCI forecasts corresponds to the
thermal stress actually perceived (Lau and Krüger, 2020).

UTCI forecasts may also be combined with forecasts for other hazards
potentially lethal for human health. The joint prediction of heat stress and
wildfires, for instance, has been proved valuable in disaster risk reduction
and emergency response management during a heatwave (Vitolo et al.,
2019). UTCI forecasts could also be targeted for areas, called hotspots,
where historical information from climate reanalysis has revealed the
simultaneous or cascading occurrence of heat extremes with respect to
wildfires or droughts (Sutanto et al., 2020). Another potential application
for UTCI forecasts would be in the definition of a “biocomfort” thresh-
old where a person will potentially experience not only heat stress but
also respiratory problems due to air pollution or pollen allergy symptoms
(Jacobs et al., 2014).

2.5 Evaluation of hazardous events

A proper evaluation of forecasts serves two purposes: inform the users
about the skill of the forecast product and guide the development of the
forecasting system. These two purposes require in many cases different
evaluation approaches and different types of skill scores. For example,
while the value of the decision is the key for the user, the system devel-
oper needs to know the quality of all components in the forecasting chain
in order to find the weakest links.

Severe events are by definition rare which results in a small sample for
verification, especially if we narrow the statistics to a short period (e.g., a
season) and/or a region (e.g., Europe). When performing the evaluation
of a specific type of severe event, one has to be aware of the trade-off
between extending the sample to other seasons/continents and the risk of
verifying extremes due to other types of meteorological circumstances.
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It is therefore difficult to reach a large enough sample to obtain reliable
statistics in verification of extremes. Another complication for statistical
verification is that the meteorological conditions leading to hazardous
events often are unique in their composition. Examples here are the
length of a heatwave leading to hazards in forms of human heat stress and
wildfires, the combination of winds and rainfall leading to coastal flooding
and a sequence of rainfall events leading to river flooding. Taking such
compositions into account further reduces the verification sample.

2.5.1 Observations for evaluation
Finding suitable observations for evaluation of both the meteorological
conditions and the hazards is a challenging task. For the evaluation of the
meteorological conditions, the spatial scale is often a problem. As the spa-
tial scale of the extreme can be very small, for example in the case of
extreme precipitation, a high density of observations is often required. On
top of network density is the technical challenge that the instruments
need to stand the extreme conditions, and often stations are physically
broken during extremes. From an evaluation perspective this could skew
the verification. Another technical challenge is if the instrument is
designed to measure the value range during the extremes. Examples here
are rain gauges that get large errors during high intensities, and
remote sensing products like scatterometer winds that get large errors for
extreme winds. On top of these challenges, is that the scale captured by
the atmospheric model (usually an average over several square km) is
different from the scale observed (often point observations). To make a
fair evaluation, a postprocessing of the one of the qualities (downscaling
of model results or upscaling of observations) is needed (see Pillosu and
Hewson, 2017; Ben-Bouallegue, 2020).

For hydrological forecasts, one of the main challenges in verification
results from a discontinuity in space: rivers are only on a small fraction of
the domain, and even within a same river network, can see large disconti-
nuities in values typically when two rivers merge.

This means that observations typically cannot be interpolated to a field
against which verifying the forecasts. Instead, to verify a river forecast, one
would ideally need to have observations along all the river network. Even
in countries or regions with very dense observation networks, this is not
the case, and river gauges can be located hundreds of kilometers apart,
with many rivers (or catchments) not gauged at all. Only occasionally
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gauges are located both upstream and downstream of a confluence, mak-
ing it difficult to really verify the contributing proportion of the different
streams. Even more challenging is to verify events such as floods or
droughts, by definition extremes hence not occurring often, and with
only limited and incomplete observation.

To verifying the impact of the hazards, news reports and/or event
databases can be used. However, event observations are often inconsistent
in terms of event definition, as they measure the impact and not directly
the magnitude of the physical properties, e.g river flow magnitude.
Moreover, different types of events are recorded, not only floods from
rivers (typically modeled by hydrological forecasting systems) but also plu-
vial flooding not entering the river channel (and by definition not mod-
eled by traditional hydrological forecasting systems) or localized flash
floods developing at a scale finer than that of the modeling system. This
means that the observed events could in fact be very heterogeneous and
not consistent with the forecasting systems, and not be a fair comparison
dataset against which to verify the forecasts. Moreover, observation-based
events are biased according to the network of measurements they come
from, whether from heterogeneous river gauges network and human
observations. The latter can typically be biased by population density
(more events reported in areas of larger population and not necessarily
reflecting the true spatial distribution of the event), communication chal-
lenges (e.g., through language or technological barriers), timing of the
event (e.g., at night) or cultural and societal factors. As a result, false nega-
tives (i.e., no event is recorded whilst one event has occurred) are
extremely common in such datasets, increasing the difficulty in defining
appropriate verification procedures and metrics. The length and consis-
tency in time of observational records, especially when relying from
volunteers, is another challenge, with hydrological volunteering networks
being in their infancy compared with well-defined meteorological volun-
teer networks. Generally, only a few years of data are available, with
records obtained from a varying number of sources, hence typically non
stationary.

Observing the impact of health hazards poses a variety of challenges.
One challenge is the quantification of the impacts via morbidity (e.g.,
hospital admissions or emergency service activities) or mortality data.
Mortality is usually preferred as death records are regularly collected and
standardized whereas morbidity data depend on guidelines set by national
health systems and may therefore vary from country to country. An
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important issue with mortality is that the number of deaths that according
to the official definition are identified as “heat-related (resp. cold-related)
deaths,” that is, due directly or significantly to heat (resp. cold), underesti-
mates the actual impact of the hazard. As heat and cold extremes are
known to have a potential contributing role also toward cardiovascular
and respiratory deaths, these must be considered when assessing the health
impacts of thermal stress-related hazards. Mortality and morbidity records
are in general collected at high spatial and temporal resolution in national
databases which, however, are usually not publicly available. Another
challenge is represented by the fact that health impacts are due not only
to the exposure to the hazard but also to the vulnerability of the affected
population, namely its socioeconomic status and health-care system.

Verifying the fire risk against recorded events poses an additional chal-
lenge, as indices are not a physical measure of fire activity but of its potential
danger if one were ignited. Therefore, high fire danger, while being cor-
rectly forecasted, might not result in active fires if there is no ignition and/
or aggressive fire suppression. From the verification point of view, this
means that the identification of false alarms is not meaningful, and the veri-
fication should mainly rely on hits and misses. Secondly, fires are rare events
and, as for any other infrequent phenomena, the verification statistics are
heavily influenced by the small number of hits when compared to the total.

As an alternative to use direct observations, simulations obtained by
forcing the hazard model (flood, fire, health etc.) with observed atmo-
spheric forcing are generally used as “proxy-observations” to conduct ver-
ifications. This has two main advantages: by definition, the simulations are
available everywhere without any gap, providing the only opportunity to
verify the results over the whole domain. This is most important in fore-
casting systems covering a large geographical domain such as continental-
scale or global. Because the same model is used to create both the
proxy-observations and the forecasts, resulting simulations will contain the
same systematic biases for example due to missing or simplified processes;
in other words, the proxy simulation provides comparable simulations to
verify against, which would not necessarily be the case with observations.
The main assumption here is that it is not the ability of the modeling sys-
tem to reproduce the hazardous processes but the forecasting performance.
However, it is clear that processes such as delay of the timing of the event,
for example, possible through reservoir management will not be captured
if they are not included in the model, which might artificially increase the
skill score when using proxy data.

119Operational multiscale predictions of hazardous events



2.5.2 Evaluation metrics
An important part of a statistical evaluation process is the choice of verifica-
tion scores. Verification scores can either evaluate a continuous measure or
be based on a discrete event. For verification of extremes, event based
scores are often used. These scores are based on counting hits, misses, false
alarms for a specified event. However, many traditional verification scores
are not well suited for extreme events, as the occurrence of nonevent by
definition largely dominates the sample (by an order of magnitude between
10 and 50 or more), depending on the rarity of the event tested. As a result,
the scores become difficult to interpret or even misleading. The choice of
score for extreme events is, for example, discussed in Stephenson et al.
(2008), Ghelli and Primo (2009), and Ben-Bouallegue et al. (2019).

The ultimate question is whether the forecast contains enough infor-
mation for the user to take preventive actions to reduce the risk of losses
due to extreme weather. One simplistic way to answer this question is to
evaluate the Potential Economical Values (Richardson, 2000). Albeit
building on a simple model of the cost for actions and potential losses,
this type of verification can indicate the type of actions for which forecasts
are useful. In Magnusson et al. (2014) forecasts for moderate extremes
(98th percentile) were verified using this metric, and it was found that
only action with a relatively low cost compared to the prevented loss is
worth taking based on medium-range forecasts. However, in reality, the
preventive actions associated with expectations of extreme weather a
week ahead is about preparations and redistribution of resources, and these
actions are relatively cheap. It is rather in the day(s) just before the event,
the relatively expensive actions need to be taken. With a lead time depen-
dency of the cost/loss ratio, it could well be that the forecasts actually are
as (or even more) useful in the medium-range than in the short-range and
make multiscale prediction of extreme weather important. Also, forecast
quality does not always equal forecast value (Richardson, 2000). A forecast
has high quality if it predicts the observed conditions well according to
some objective or subjective criteria. It has value if it helps the user to
make a better decision in terms of protective actions (Cloke et al., 2017).

One interpretation of the Potential Economical Value model is when the
cost of a missed event is very high, for example, in terms of human lives, the
deliberate over-forecasting may be justified (Richardson, 2000; Cloke et al.,
2017). This means that the decision should be calibrated on the decision level
and not on the physical model. This could lead to mis-interpretations of the
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verification results when developing the physical model, and it is important
to keep the evaluations separate.

A common ingredient in many of the evaluation metrics is a benchmark,
from which the skill is calculated to be relative to. For example, in the
Potential Economical Value discussed above, the value is determined relative
to decisions made based on climatology. But other benchmarks could be
based on persisting the conditions at the forecast initialization, or based on
predictions from a more simplified forecasting system (Pappenberger et al.,
2015a). While climatology is preferred as a benchmark to measure the overall
level of skill, persistence or a simplified model is preferable to determine the
gain in skill by the forecast system. However, a special attention is needed to
determine the climatology regarding type of input data (observations or
reanalysis), length of sample and seasonality, otherwise the skill estimation can
be misleading especially for verification of extremes.

2.6 Conclusion

With all challenges listed above, it is attractive to study cases individually.
However, strictly speaking a probabilistic forecast for a single extreme
event cannot be verified. This is because there is no such quantity as “true
probability distribution” but only the outcome of the event. There is also
a risk that one only focuses on the events that appeared, which would
skew the evaluation to “hits” and “misses,” and ignore “false alarms.”

Instead one needs to combine several approaches. In order to get reliable
statistics for the verification one needs to lower the threshold for the event and
focus on simple (noncompounded) events for which observations exist and are
distributed, such as 24-hour precipitation, 10-m mean wind and 2-m tempera-
ture. Such verification of extreme weather for ECMWF forecasts was under-
taken in Magnusson et al. (2014) and Ben-Bouallegue et al. (2019). The
second approach is to evaluate the model climatology for extreme events to
verify if the model is able to produce the extremes with the same frequency as
in reality (Magnusson et al., 2014). The third approach is to study individual
cases, and from such work one can identify important aspects to verify further
(Magnusson, 2019), which we have given examples of in Section 3.3.

2.7 Summary

In this chapter we have discussed the prediction of severe weather and
related hazards across timescales, and the components involved in a
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forecasting system. The extended-range predictability of weather extremes
comes from long-lived flow patterns in the mid-latitudes together with tel-
econnections from tropics/stratosphere and boundary conditions such as
SST and soil moisture. For medium-range forecasts it is important to cap-
ture the large-scale evolution of the atmospheric flow, which requires good
global data assimilation. For short-range forecasts the local data assimilation
is important as well as physical parameterizations in the model that are
suitable for extreme conditions. However, one also needs to keep in mind
that uncertainties even in the shortest forecasts cannot be eliminated due to
insufficient knowledge about the current state, some physical processes and
due to variability inside the grid-box. The barriers of predictability for any
of the hazard and impact models in this chapter are more complex and
forecast quality on timescales is more intertwined with regional and local
properties, thus a more general attribution of the dominant factors influenc-
ing predictability at each timescale is more complex. For example, at the
long range, the predictability of La Nina or El Nino cannot be directly
associated with the predictability of floods or droughts (Emerton et al.,
2017). Therefore, process-based understanding of hydrological variability
and causality at all space and timescales is still a major challenge for hydro-
logical forecasts (Blöschl et al., 2019), fire and health models are largely
challenged in adequately representing human interactions.

Predicting extreme weather several days in advance is clearly a proba-
bilistic problem. The overarching target in ensemble forecasting is to issue
as narrow (sharp) PDF as possible whilst maximizing the reliability and
keep a desirable consistency in the PDF.

The fundamental question is how to improve the prediction of
extreme events on all timescales and where to put the resources in terms
of research and computer power. To obtain a good reliability by minimiz-
ing frequency biases, one need to simulate the event with the right clima-
tological frequency, that is, the PDF of the model climate needs to be
close to the PDF of the true climatology, including the tails. It is common
that the magnitude of the simulated extremes are limited by the model
resolution, and increased resolution has in the past improved such biases.
Here limited-area models play a role to better resolve the extreme; as well
as postprocessing techniques/AI to adjust the forecast PDF. However, the
frequency bias can also be associated with deficiencies in the model phys-
ics connected to the extremes (e.g wind gust parameterization and oro-
graphic precipitation), and here improved model physics can help to
improve the simulation of the extremes.
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To increase the sharpness of the PDF without losing reliability, one
needs to decrease the forecast error to allow a more confident ensemble.
To do this a key is to reduce the analysis error by improving the compo-
nents involved in the data assimilation, such as observation usage, model-
ing of background error statistics, minimization algorithms and also the
model used for the first guess forecast. To obtain a reliable ensemble, an
accurate simulation of the initial uncertainties is needed as well as simulat-
ing the model uncertainties. As predicting extremes in the medium-range
is often dependent on resolving the extreme tail of the PDF, a larger
ensemble is needed compared to only focusing on the ensemble mean.

Finally, to capture signals from boundary conditions (soil, sea-
temperature etc.) on the extended-range timescale we need to include all
relevant earth system modeling components. We also need to make sure
that the model is capable of simulating the teleconnections from the
sources of predictability.

All these points are associated with resources in terms of research and
operational constraints (i.e., ensemble configurations and computer
power), and the operational forecasting centers need to find a good bal-
ance to progress. By evaluating a range of extreme weather events, the
current bottlenecks for improving the forecasts can be identified. Current
challenges in different parts of prediction systems for high-impact weather
has recently been outlined in Majumdar et al. (2021).

The evaluation of the cases here only covers the physical aspects of the
forecasts and not the warnings based on the forecasts and the anticipation
of the information. These aspects will be evaluated within the WMO/
WWRP Hiweather project (Zhang et al., 2019). The future plan is for
ECMWF to collaborate with other partners in the project in order to
cover the evaluation of the full forecasting chain of hazardous weather
events. This would increase our knowledge of the value of the forecast
information and shortcomings in the system.
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